?

Log in

No account? Create an account
Previous Entry Share Next Entry
Введение в биологию (Xa)
caenogenesis
Тема Xb
ЭУКАРИОТЫ (продолжение)


Актин, ассоциированный с миозином, коротко называют актин-миозиновым комплексом. С ним-то и связано большинство типов движения, на которые способны эукариотные клетки. Например, только благодаря актин-миозиновому комплексу возможен фагоцитоз - захват клеткой некой частицы (например, другой клетки) с изоляцией ее внутри вакуоли и последующим перевариванием. Вакуоль, образующаяся в результате фагоцитоза, называется фагосомой. Она транспортируется цитоскелетом до места слияния с другой вакуолью - лизосомой, содержащей ферменты, которые расщепляют слишком крупные молекулы до мономеров (например, белки до аминокислот). После слияния образуется фаголизосома, в которой захваченные частицы и перевариваются. При фагоцитозе клетка может потерять довольно большую часть наружной мембраны, особенно если она "проглотила" что-то крупное. Но это ненадолго: когда пища переваривается, от фаголизосомы отделяются маленькие вакуольки, которые перемещаются к наружной мембране и встраиваются в нее, чтобы вернуть мембранные липиды обратно. Этот процесс называется рециклизацией мембран.



Именно путем фагоцитоза питается, например, попавшая в школьный учебник зоологии обыкновенная амеба. Клетки, активно занимающиеся фагоцитозом, есть и в нашем теле. Это некоторые разновидности белых кровяных клеток - нейтрофилы и моноциты, а также клетки рыхлой соединительной ткани - макрофаги. Последние есть практически во всех органах, и в них могут превращаться выползающие из кровеносных сосудов моноциты. Макрофаги постоянно перемещаются амебоидным способом, меняя форму клетки и образуя с помощью актин-миозинового комплекса временные выросты - ложноножки. А в мембране макрофага сидят белки-рецепторы, которыми он "проверяет" все встречные объекты. Любые клетки, на внешней поверхности которых нет некоторого строго определенного набора белков и липидов, макрофаг тут же заглатывает. Это довольно эффективный способ борьбы, например, с вредными бактериями. На картинке показана регуляция работы макрофага: в его мембране есть рецепторы, срабатывание которых запускает фагоцитарную активность, а есть и такие, срабатывание которых, наоборот, тормозит ее (Hussell, Bell, 2014).


Правда, бактерии тоже сопротивляются. Например, возбудитель проказы - грамположительная бактерия, которую в честь первооткрывателя называют палочкой Хансена - научился жить аж внутри макрофагов. Как мы помним, грамположительные бактерии отличаются от грамотрицательных отсутствием второй клеточной мембраны, так что их самой наружной оболочкой является клеточная стенка. У палочки Хансена она в основном полисахаридная, но, кроме того, в ней содержится много очень необычных жирных кислот с длинными разветвленными цепями, которые делают поверхность бактерии чрезвычайно гидрофобной и устойчивой к внешним воздействиям - в том числе и к действию лизосомальных ферментов, которые по идее должны расщеплять все что угодно. В каком-то смысле эти жирные кислоты и есть главная тайна возбудителя проказы. Благодаря им палочки Хансена, фагоцитированные макрофагами, с удовольствием живут и размножаются прямо в цитоплазме этих клеток. К счастью, у большинства бактерий таких невероятных биохимических способностей все-таки нет.
Фагоцитоз есть не у всех эукариот, во-первых, потому, что многим из них хватает других способов питания, и во-вторых, потому что фагоцитоз несовместим с клеточной стенкой. Сквозь клеточную стенку, которая находится снаружи от мембраны и часто бывает довольно толстой, никого проглотить невозможно, а отказ от нее сразу делает клетку и менее прочной, и менее защищенной. Как раз по этим причинам нет фагоцитоза, например, у зеленых растений. Но у самых древних эукариот он, скорее всего, был.
Все эти истории рассказываются вот к чему. Фагоцитоз возможен только при наличии актин-миозинового комплекса. Это чисто эукариотное свойство. У бактерий и архей актин-миозинового комплекса нет, поэтому к фагоцитозу они неспособны. Очень немногочисленные хищные прокариоты всегда меньше своих жертв и являются на самом деле скорее паразитами: бактериальный хищник вбуравливается в толщу клеточной стенки более крупной бактерии, питается находящимися там белками, липидами и полисахаридами и там же размножается. А вот проглотить свою жертву целиком никакая бактерия не может в принципе.
Это означает, что до появления эукариот - то есть в первые полтора миллиарда лет истории жизни - на Земле не было никаких хищников. Самыми крупными и сложными живыми объектами этой эпохи были строматолиты, подушкообразные многослойные колонии прокариотных сине-зеленых водорослей. Наработанная ими биомасса просто захоранивалась в осадочных породах: поедать и метаболизировать ее, переводя в итоге в атмосферный углекислый газ, было некому. Цепи питания были очень короткими и простыми.



Появление хищника, способного к фагоцитозу, сразу изменило ситуацию. Естественным ответом жертвы на давление такого хищника был отбор на увеличение размера, чтобы хищник не смог ее проглотить. Но и хищники стали увеличивать размеры в ответ. Возникла положительная обратная связь, и началась эволюционная гонка вооружений (это не метафора, подобные процессы должны описываться теми же уравнениями, что и гонка вооружений в экономике). Клетки постепенно становились все более крупными и сложными. А надо заметить, что если увеличить линейный размер клетки в 10 раз (обычный порядок разницы между эукариотами и прокариотами), то ее объем увеличится примерно в 1000 раз, с пропорциональным ростом нагрузки на внутриклеточные системы синтеза и транспорта. И наконец, когда увеличивать размер отдельной клетки уже некуда, в ход идет последний довод: многоклеточность.
Этот сценарий навел некоторых ученых на мысль, что именно появление цитоскелета, и особенно актин-миозинового комплекса, было начальным звеном, за которым последовало приобретение всего остального набора эукариотных признаков (Малахов, 2003). А есть ли основания считать, что цитоскелет действительно появился раньше других признаков эукариот? Да, есть. В последние несколько лет было обнаружено, что белки, очень близкие к актину и тубулину, есть у некоторых архей. Правда, ничего приближающегося по сложности к эукариотному цитоскелету там нет. И фагоцитоз эти археи еще не освоили. Но то, что белки цитоскелета - очень древние, теперь ясно.
Итак, если мы посмотрим на предка эукариот глазами любой бактерии, то увидим невероятного монстра: лишенный клеточной стенки и постоянной формы тела, он компенсирует это гигантским размером, а главное - направо и налево пожирает целиком своих соседей по бактериальному сообществу. Поистине прокариотный ночной кошмар, nightmare.


На картинке - современный одноклеточный эукариот Collodictyon, только что проглотивший целую колонию зеленых водорослей, состоящую из 8 клеток (!). Зеленые водоросли - тоже эукариоты, так что клетки у них довольно крупные, но коллодиктиона и это не остановило. Между тем коллодиктион - это чудом доживший до наших дней представитель одной из самых древних эволюционных ветвей эукариот. Очень вероятно, что первые эукариоты были на него похожи. Трудно даже представить, какую революцию в прокариотном мире могло произвести появление такого суперхищника.

  • 1
А почему размер клетки не может увеличиваться неограниченно?

Однозначно ответить не берусь, то, что приходит в голову: 1) такую клетку придется обязательно делать многоядерной, усложняя жизненный цикл, 2) внутриклеточные транспортные системы, как правило, не рассчитаны на перенос веществ на слишком большие расстояния, 3) огромная многоядерная клетка будет механически неустойчива, повредится да и вытечет.

1) Почему? из-за 2)?
2) Понятно. Это как с трахеями насекомых, невозможно увеличивать дальше некоторого предела благодаря физическому ограничению?
3) Это потому-что клеточная стенка молекулярной толщины? Есть какое-то принципальное ограничение на количество мембран составляющих это стенку?

1 - потому что продуктов транскрипции от одного ядра (если оно обыкновенное) банально не хватит.
2 - думаю, примерно так, хотя расчетами подтвердить не берусь.
3 - клеточная стенка вообще не состоит из мембран (если не считать грамотрицательных бактерий), резкого ограничения нет, но чем она толще, тем больше затруднена диффузия веществ через нее.

2) и 3) понятно. Насчет 1), это потому-что скорость транскрипции ограничена, да? Видимо это же ограничение играет роль для прокариотов.

Получается, что именно появление фагоцитов подтолкнуло одноклеточные к эволюции, одним из результатов которых мы с вами являемся)

Вопрос, конечно, праздный... А могли фагоциты вообще не появиться?

https://postnauka.ru/faq/35994

"А пока мы не знаем даже, насколько закономерно было появление эукариот. Если для других этапов развития жизни, таких как переход от мира РНК к РНК-белковому миру, обособление прокариотных клеток из доклеточного «мира вирусов» или появление фотосинтеза, мы с уверенностью можем сказать, что они закономерны и практически неизбежны, коль скоро жизнь уже появилась, то появление эукариот в прокариотной биосфере могло быть очень маловероятно. Возможно, что в нашей Галактике есть миллиарды планет с жизнью бактериального уровня, но только на Земле появились эукариоты, на основе которых появились многоклеточные животные и затем разумные существа."

Есть такая точка зрения. К ней пришло одновременно несколько ученых, называется "теория редкой Земли".
Кстати, у Миши вот-вот выйдет книга: http://www.alpinabook.ru/catalog/PopularScience/69020/

О, спасибо! Оставил свой мэйл, чтобы сообщили о выходе книги.

Очень интересно!

А можно определение клеточной стенки?
Что это? Чем отличается от мембраны?

Спасибо.
Гм. Я вроде подряд читал, а это почему-то пропустил. Вы задним числом ничего не дописывали?

Не-а, разве что отдельные фразы. Все крупные куски писались по порядку.

Введение в биологию (сборка)

Пользователь pomarki сослался на вашу запись в своей записи «Введение в биологию (сборка)» в контексте: [...] Введение в биологию (Xa). ЭУКАРИОТЫ [...]

Введение в биологию от caenogenesis

Пользователь m_3713 сослался на вашу запись в своей записи «Введение в биологию от caenogenesis» в контексте: [...] Введение в биологию (Xa). ЭУКАРИОТЫ [...]

  • 1